
Non-Cognitive Predictors of Student Success:
A Predictive Validity Comparison Between Domestic and International Students

A Scalable & Accurate Open Source Python

Canopy Classification Module For NAIP

Imagery.

About

Tree canopy monitoring is an important

aspect of maintaining any environment. On a

large scale the monitoring and data creation

can be a difficult and time-consuming process

to undertake. Proprietary software dedicated

to completing such tasks may be expensive

and with a lack the insight needed into the

innerworkings of their classification

algorithms leading to open source

alternatives. The Python programming

language provides an ideal platform for the

creation of a scalable method capable of

accurately processing the large amounts of

data to classify canopy on a large scale. The

Scikit-learn Extra Trees classifier is utilized

alongside the Geospatial Data Abstraction

Library (GDAL) API to enact the method

created. The framework created is based

around the classification of imagery from the

National Agriculture Imagery Program (NAIP)

due to its high spatial resolution. The

framework is believed to be comparable to

proprietary systems in both accuracy and

computational time.

Configuration

CanoPy Foss is split into 3 separate .py files –

config.py, training.py, & canopy_foss.py.

The configuration is the most important file as

it consists of all the file paths that will be used

for I/O.

Dependencies

• GDAL /OGR

• Rindcalc

• NumPy

• Scikit-Learn
Owen Smith

CanoPy FOSS
A Random Forests Based Canopy Classification
System Utilizing NAIP Imagery Within A Python
Framework

>>> import canopy_foss as cf

>>> cf.ARVI(phy_id=8)

>>> cf.batch_extra_trees(phy_id=8)

>>> cf.clip_reproject_classified_tiles(phy_id=8)

>>> cf.mosaic_tiles(phy_id=8)

>>> cf.clip_mosaic(phy_id=8)

OR

>>> import canopy_foss as cf

>>> cf. create_canopy_dataset(phy_id=8)

CanoPy FOSS

Configuration Parameter Description

proj → EPSG code of projection in which final data will be reprojected to.

workspace → Directory where process will output results and read data from

naip_dir → Folder that contains all NAIP

results → Folder where all regions folders will be created

class_directory → Folder within region folders that will contain final outputs after classification

data → Folder where all reference and training data is stored

phyreg_lyr → Physiographic districts shapefile

clip_naip → Original NAIP QQ shapefile to use for clipping

naipqq_shp → Joined NAIP QQ tile with PHYSIO_ID's to query filenames

training_raster → Rasterized training data

training_fit_raster → ARVI raster which training data applies to

Data provided by the USDA Aerial Photography Program

GISC 4903 Special Topics in GIS

Instructor: Huidae Cho

Process

Join NAIP Quarter Quad (QQ) shapefile with

Physiographic District shapefile

Configure data paths in config.py

Create & test training data with training.py

Batch create ARVI rasters for physiographic

district

Classify with Extra Trees classifier

Reproject to specified projection & clip each tile

to its QQ to remove overlap

Mosaic tiles

Clip mosaiced tiles to outline of physiographic

district

Results

The created process is exponentially

faster than proprietary software

such as Textron’s Feature Analyst

while still maintaining a high degree

of accuracy. CanoPy FOSS’s total

computation time for the largest

physiographic district in GA is ~ 14 ½

hours while Textron's takes ~ 36

hours just to classify.

Source Code
Available Here

